Supplementary examination 2019 M.Math. II — Algebraic Geometry

Each question carries 20 marks.

Group A

Answer any one question from group A

Question 1

Let V be a non-empty variety in \mathbb{A}^n , $\Gamma(V)$ be the coordinate ring. For $P \in V$ let $\mathcal{O}_P(V)$ be the set of rational functions on V that are defined at P.

(a) Show that $\Gamma(V) = \bigcap_{P \in V} \mathcal{O}_P(V)$.

(b) Show that $\mathcal{O}_P(V)$ is a noetherian local domain.

Question 2

Let W be a subvariety of an affine variety V and let $I_V(W)$ be the ideal of $\Gamma(V)$ corresponding to W.

(a) Show that every polynomial function on V restricts to a polynomial function on W.

(b) Show that the map from $\Gamma(V)$ to $\Gamma(W)$ defined in part (a) is a surjective homomorphism with kernel $I_V(W)$.

Group B

Answer any four questions from group B

Question 3

(a) Let F be a projective plane curve. Show that a point P is a multiple point of F if and only if $F(P) = F_X(P) = F_Y(P) = F_Z(P) = 0$.

(b) Show that the curve $XY^4 + YZ^4 + XZ^4$ is irreducible. Find the multiple points and the multiplicities and tangent lines at the multiple points.

Question 4

(a) State Max Noether's fundamental theorem.

(b) Let C, C' be plane cubics, $C \cdot C' = \sum_{i=1}^{9} P_i$. Let Q be a conic and $Q \cdot C = \sum_{i=1}^{6} P_i$. Assume P_1, \ldots, P_6 are simple points on C. Show that P_7, P_8, P_9 lie on a straight line.

Question 5

Let U_i be the subset of \mathbb{P}^n defined as $U_i = \{ [x_1 : \ldots : x_{n+1}] \in \mathbb{P}^n | x_i \neq 0 \}$ and equipped with the topology induced from \mathbb{P}^n . Let $\varphi_i : \mathbb{A}^n \longrightarrow U_i$ be defined as $\varphi_i(a_1, ..., a_n) = [a_1 : ... : a_{i-1} : 1 : a_i : ... : a_n].$

(a) Show that φ_i is a homeomorphism.

(b) Show that a set $W \subset \mathbb{P}^n$ is closed if and only if $\varphi_i^{-1}(W)$ is closed in \mathbb{A}^n for $i = 1, \ldots, n + 1$.

Question 6

(a) Let X be a variety. Define dimension of X.

(b) Let V^* be the projective closure of an affine variety V. Show that $\dim V = \dim V^*$.

(c) Show that $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$.

Question 7

(a) Show that two varieties are birationally equivalent if and only if their function fields are isomorphic.

(b) Show that every n-dimensional variety is birationally equivalent to a hypersurface in \mathbb{A}^{n+1} or \mathbb{P}^{n+1} .

Question 8

Let C be an irreducible projective curve, $f : X \longrightarrow C$ be the birational morphism from the nonsingular model X onto C and K = k(C) = k(X) be the function field.

(a) For $z \in K$, define div(z), divisor of z.

(b) Show that for any $z \in K$, div(z) is a divisor of degree zero.

(c) Let us assume that the above curve C is a plane curve of degree n. Let G be a plane curve of degree m and do not contain C as a component. Define div(G), divisor of G and show that div(G) is a divisor of degree mn.